Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Paradoxical regulation of biotin utilization in brain and liver and implications for inherited multiple carboxylase deficiency.

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of five carboxylases in human cells, and mutations of HCS cause multiple carboxylase deficiency (MCD). Although HCS also participates in the regulation of its own mRNA levels, the relevance of this mechanism to normal metabolism or to the MCD phenotype is not known. In this study, we show that mRNA levels of enzymes involved in biotin utilization, including HCS, are down-regulated during biotin deficiency in liver while remaining constitutively expressed in brain. We propose that this mechanism of regulation is aimed at sparing the essential function of biotin in the brain at the expense of organs such as liver and kidney during biotin deprivation. In MCD, it is possible that some of the manifestations of the disease may be associated with down-regulation of biotin utilization in liver because of the impaired activity of HCS and that high dose biotin therapy may in part be important to overcoming the adverse regulatory impact in such organs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app