Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fetal intestinal obstruction induces alteration of enteric nervous system development in human intestinal atresia.

Pediatric Research 2004 December
Intestinal motility disorders are a major cause of morbidity after surgical repair of intestinal atresia of unknown mechanism. We hypothesized that interruption of antenatal peristalsis may disturb the normal development of the enteric nervous system. Using a series of neuronal (synaptophysin, neuronal nitric oxide synthase, neurofilaments) and nonneuronal markers (glial acidic fibrillary protein and c-Kit) and immunohistochemistry, we have defined developmental steps of the enteric nervous system in normal intestine (12 fetuses, 15 children, and 4 adults) and their alterations above and below the obstacle in 22 human intestinal atresia compared with age-matched controls. Antisynaptophysin antibody revealed the progressive conversion of the myenteric plexus from a continuous belt into regularly spaced ganglions during normal fetal gut development and, by contrast, the significantly delayed appearance of individual neuronal ganglions in the distal segments of atresia (p < 0.05). Staging using three other markers for neuronal (neurofilaments and neuronal nitric oxide synthase) and nonneuronal cells (glial acidic fibrillary protein) confirmed that maturation of the myenteric plexus was significantly delayed below atresia (p < 0.01). These results indicate that intestinal atresia impairs the development of the enteric nervous system and provide an anatomical substrate for the motility disorders observed after surgical repair. They point to the role of peristalsis in normal gut development and suggest that stimulation of peristalsis might be used to accelerate recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app