JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions.

The pharmacological profile of drugs for hyperuricemia is reviewed. These agents may reduce the amount of uric acid in blood by means of two different ways: (1) by reducing uric acid production through the inhibition of the enzyme xanthine oxidase (as allopurinol); (2) by increasing uric acid clearance through an inhibition of its renal tubular reabsorption (as probenecid), or through its metabolic conversion to a more soluble compound (as urate oxidase). Allopurinol is rapidly converted in the body to the active metabolite oxypurinol whose total body exposure may be 20-fold greater than that of the parent compound due to a much longer elimination half-life. Allopurinol undergoes several pharmacokinetic interactions with concomitant administered drugs, some of which may be potentially hazardous (especially with mercaptopurine and azathioprine). Probenecid is an uricosuric agent which undergoes extensive hepatic metabolism and whose elimination after high doses may become dose dependent. It may inhibit renal tubular secretion of several coadministered agents, including methotrexate and sulphonylureas. Rasburicase is a recombinant form of the enzyme urate oxidase which catalyzes the conversion of uric acid to the more soluble compound allantoin. Unlike allopurinol, it does not promote accumulation of hypoxanthine and xanthine in plasma, thus preventing the risk of xanthine nephropathy. Rasburicase showed no significant accumulation in children after administration of either 0.15 or 0.20 mg/kg/daily for 5 days. Rasburicase probably undergoes peptide hydrolysis and in in vitro studies was shown neither to inhibit or induce cytochrome P450 isoenzymes nor to interact with several drugs, so that no relevant interaction is expected during cotreatment in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app