Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomechanical evaluation of fixation techniques for bridging segmental mandibular defects.

OBJECTIVE: To compare biomechanical properties of currently available plating systems used to reconstruct segmental mandibular defects.

DESIGN: Controlled in vitro investigation.

SETTING: Academic medical center laboratory.

INTERVENTIONS: Thirty-two polyurethane mandibles were equally divided among 4 groups: mandibles with a 4-cm lateral segmental defect that was bridged with a (1) 3.0-mm locking-screw reconstruction plate, (2) 2.4-mm low-profile reconstruction plate, or (3) 2.4-mm reconstruction plate and (4) uncut (control) mandibles. All plates were contoured and secured to the synthetic mandibles with 4 bicortical screws on either side of the defect. Three constructs from each group were subjected to contralateral-molar single-load-to-failure testing. Mean yield displacement, yield load, and bending stiffness were quantified and compared among the 4 groups. The single-load-to-failure data were used to establish conditions for fatigue testing; such testing was then performed on the remaining 5 samples in each group. Mean cycles to failure were measured and compared among the 4 groups.

RESULTS: Mean yield displacement, yield load, and bending stiffness were comparable among the plated groups. Both the 3.0-mm locking-screw and 2.4-mm low-profile reconstruction plate designs withstood 1580 and 1124 times more cycles to failure, respectively (P = .005), than did the control group. The other reconstruction plate was also superior to the unplated controls, offering an 865-fold improvement.

CONCLUSIONS: All 3 mandibular fixation device systems tested produce comparable levels of single load to failure biomechanical integrity; however, the higher-profile plating system design offered slightly superior fatigue performance. No differences in performance were observed between the locking and nonlocking designs; neither failed at the screw-substrate interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app