JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses.

Oxygen tensions play an important role in the outcome of infections. Oxygen is cidal or static for microorganisms that lack defenses against oxidants. Hyperoxia and hyperbaric oxygen exert antimicrobial effects by increasing the intracellular flux of reactive oxygen species. In bacteria, such species cause DNA strand breaks, degradation of RNA, inhibition of amino acid biosynthesis, and inactivation of membrane transport proteins. Oxygen tensions also affect the activity of antimicrobial agents. In general, hyperoxia potentiates while anaerobiosis decreases the activity of many antimicrobial drugs. With regard to host defenses, hyperoxia elevates oxygen tensions in infected tissues to levels that facilitate oxygen-dependent killing by leukocytes. Prolonged hyperoxia inhibits DNA synthesis in lymphocytes and impairs chemotactic activity, adherence, phagocytic capacity, and generation of the oxidative burst in polymorphonuclear leukocytes and macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app