Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression.

Neuron 2005 January 7
Dysregulation of central serotonin neurotransmission has been widely suspected as an important contributor to major depression. Here, we identify a (G1463A) single nucleotide polymorphism (SNP) in the rate-limiting enzyme of neuronal serotonin synthesis, human tryptophan hydroxylase-2 (hTPH2). The functional SNP in hTPH2 replaces the highly conserved Arg441 with His, which results in approximately 80% loss of function in serotonin production when hTPH2 is expressed in PC12 cells. Strikingly, SNP analysis in a cohort of 87 patients with unipolar major depression revealed that nine patients carried the mutant (1463A) allele, while among 219 controls, three subjects carried this mutation. In addition, this functional SNP was not found in a cohort of 60 bipolar disorder patients. Identification of a loss-of-function mutation in hTPH2 suggests that defect in brain serotonin synthesis may represent an important risk factor for unipolar major depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app