Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms of enhanced carbohydrate and lipid metabolism in adipose tissue in uremia.

OBJECTIVE: Hyperlipidemia is a permanent finding in advanced renal failure. It is supposed to be responsible for the accelerated arteriosclerosis and cardiovascular complications observed in patients with that disease. The background is partially determined, however, our knowledge in this matter is not yet satisfactory.

METHODS: This study is based on the experimental rat model of chronic renal failure (CRF). Considering white adipose tissue (WAT) lipogenesis upregulation in CRF, along with the determination of acetyl coenzyme A carboxylase (ACC) and fatty acid synthase (FAS) genes expression, we have measured WAT gene expression for sterol regulatory binding protein 1 (SREBP-1) at the level of protein mass and mRNA abundance. Furthermore, we have determined glucose uptake, glucose-to-CO 2 conversion rate, and glucose translocator (GLUT-4) gene expression in WAT.

RESULTS: Upregulation of both FAS and ACC gene expression was found in WAT of CRF rats. It was accompanied by WAT SREBP-1 gene overexpression. Moreover, we have observed the increased glucose uptake, glucose to CO 2 conversion rate, and GLUT-4 gene expression in WAT of CRF rats in comparison with controls.

CONCLUSION: SREBP-1 gene overexpression may contribute to enhanced lipogenesis upregulation in WAT of CRF rats. It is not excluded that the increased WAT glucose metabolism activity is also induced by this mechanism, although there is no evidence currently to that end. We hypothesize that the increased WAT lipogenesis capacity could be a part of mechanism(s) leading to CRF-induced hyperlipidemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app