Journal Article
Review
Add like
Add dislike
Add to saved papers

Beyond hypoestrogenism in amenorrheic athletes: energy deficiency as a contributing factor for bone loss.

The etiology of amenorrhea in exercising women is linked to a mismatch between caloric intake and high levels of exercise energy expenditure that results in a chronic energy deficit. This in turn stimulates compensatory mechanisms such as weight loss, metabolic hormone alterations, or energy conservation that subsequently causes a central suppression of reproductive function and concomitant hypoestrogenism. This suppression of reproductive function is associated with stress fractures, loss of bone mineral density, the failure to achieve peak bone mass, osteopenia, and osteoporosis. It has generally been accepted that the chronic hypoestrogenism is the major cause of bone loss in exercising women. However, the effects of food restriction and energy deficiency on bone mineral density likely represents an estrogen-independent mechanism for bone loss that involves some of the metabolic-related hormones altered with exercise-associated amenorrhea. These hormones (IGF-1 and leptin) play an important role in modulating bone turnover and bone mineral density in these women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app