Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of three novel mutations in Japanese patients with Menkes disease and mutation screening by denaturing high performance liquid chromatography.

BACKGROUND: Menkes disease is an X-linked recessive disorder resulting in a connective-tissue disturbance and profound neurodegeneration in early childhood. The gene for Menkes disease has been isolated and predicted to code for copper transporting ATPase. In this study, a mutation analysis in Japanese patients with Menkes disease was performed, as was a mutation screening by denaturing high performance liquid chromatography (DHPLC).

METHODS: A mutation analysis on five Japanese patients with Menkes disease was performed using a direct sequencing method and DHPLC.

RESULTS: Two nonsense mutations, two missense mutations and one splice donor site mutation were found. The DHPLC analysis showed differences in the peaks between the DNA fragments of wild type and heteroduplex (wild type and mutant).

CONCLUSIONS: Three novel mutations (Asp1044Gly, Pro1279Leu and IVS21+1 g to a) were detected. The Asp1044Gly mutation destroys the highly conserved phosphorylation domain in exon 16. The splice site abnormality leads to a skipping of exon 21 coding for part of the seventh transmembrane domain. These two mutations could cause a severe protein dysfunction. Another missense mutation, Pro1279Leu, in exon 20 was found in a patient with a mild type of Menkes disease. It is speculated that this mutation partially maintains the ATP7A function is. A DHPLC analysis could detect these mutations. It is concluded that the best way to make a molecular diagnosis for Menkes disease is to first screen DNA samples for all exons using DHPLC, and thereafter perform direct sequencing for exons which have an abnormal elution profile in order to rapidly detect such mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app