Case Reports
Comparative Study
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Enzymatic defect in "X-linked" sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency.

Recently, the human gene encoding erythroid-specific delta-aminolevulinate synthase was localized to the chromosomal region Xp21-Xq21, identifying this gene as the logical candidate for the enzymatic defect causing "X-linked" sideroblastic anemia. To investigate this hypothesis, the 11 exonic coding regions of the delta-aminolevulinate synthase gene were amplified and sequenced from a 30-year-old Chinese male with a pyridoxine-responsive form of X-linked sideroblastic anemia. A single T----A transition was found in codon 471 in a highly conserved region of exon 9, resulting in an Ile----Asn substitution. This mutation interrupted contiguous hydrophobic residues and was predicted to transform a region of beta-sheet structure to a random-coil structure. Prokaryotic expression of the normal and mutant cDNAs revealed that the mutant construct expressed low levels of enzymatic activity that required higher concentrations of pyridoxal 5'-phosphate to achieve maximal activation than did the normal enzyme. The amino acid substitution occurred in the exon containing the putative pyridoxal 5'-phosphate binding site and may account for the reduced ability of the cofactor to catalyze the formation of delta-aminolevulinic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app