Clinical Trial
Clinical Trial, Phase I
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer.

PURPOSE: Human Valpha24 natural killer T (NKT) cells bearing an invariant Valpha24JalphaQ antigen receptor, the counterpart of murine Valpha14 NKT cells, are activated by a specific ligand, alpha-galactosylceramide (alphaGalCer, KRN7000), in a CD1d-dependent manner. I.v. administration of alphaGalCer-pulsed dendritic cells (DC) induces significant activation and expansion of Valpha14 NKT cells in the lung and resulting potent antitumor activities in mouse tumor metastatic models. We did a phase I dose escalation study with alphaGalCer-pulsed DCs in lung cancer patients.

EXPERIMENTAL DESIGN: Patients with advanced non-small cell lung cancer or recurrent lung cancer received i.v. injections of alphaGalCer-pulsed DCs (level 1: 5 x 10(7)/m(2); level 2: 2.5 x 10(8)/m(2); and level 3: 1 x 10(9)/m(2)) to test the safety, feasibility, and clinical response. Immunomonitoring was also done in all completed cases.

RESULTS: Eleven patients were enrolled in this study. No severe adverse events were observed during this study in any patient. After the first and second injection of alphaGalCer-pulsed DCs, dramatic increase in peripheral blood Valpha24 NKT cells was observed in one case and significant responses were seen in two cases receiving the level 3 dose. No patient was found to meet the criteria for partial or complete responses, whereas two cases in the level 3 group remained unchanged for more than a year with good quality of life.

CONCLUSIONS: In this clinical trial, alphaGalCer-pulsed DC administration was well tolerated and could be safely done even in patients with advanced disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app