JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis.

BACKGROUND: Respiratory syncytial virus (RSV) bronchiolitis in infants is characterized by a massive neutrophilic infiltrate into the airways. Chemokines direct migration of leukocytes and contribute to the pathogenesis of RSV disease. However, little is known about pulmonary chemokine responses to RSV in humans. Our aim was to characterize the production of chemokines in the lungs of infants with RSV bronchiolitis and how this production changes over time.

METHODS: Chemokine mRNA and the concentration of chemokines were measured in nonbronchoscopic bronchoalveolar lavage (BAL) samples from infants with RSV bronchiolitis and from control infants. In infants with RSV bronchiolitis, changes in the concentrations of chemokines during the 7 days after intubation and between the days of intubation and extubation were examined.

RESULTS: The production of chemokines within the lower respiratory tract was shown in all patients with RSV bronchiolitis. CXC chemokines (particularly CXCL10/interferon-inducible protein 10 and CXCL8/interleukin-8) were found to be the most abundant, but CC chemokines (CCL2/monocyte chemotactic protein 1 and CCL3/macrophage inflammatory protein-1 alpha) were also present. Concentrations of some of these chemokines remained elevated over the course of the illness, whereas others decreased steadily. No differences in the concentrations were found between the days of intubation and extubation.

CONCLUSIONS: CXC chemokines predominate within the RSV-infected lung. Much of this response comes from inflammatory cells within the lower respiratory tract. Chemokine response patterns vary over time, possibly indicating different cellular sources for individual chemokines in the RSV-infected lung.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app