JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

High-dose insulin therapy for calcium-channel blocker overdose.

OBJECTIVE: To evaluate the evidence for using high-dose insulin therapy with supplemental dextrose and potassium in calcium-channel blocker (CCB) overdose.

DATA SOURCES: Evidence of efficacy for high-dose insulin therapy with supplemental dextrose and potassium was sought by performing a search of MEDLINE and Toxline between 1966 and July 2004 using combinations of the terms calcium-channel blocker, overdose, poisoning, antidote, and insulin. Abstracts from the North American Congress of Clinical Toxicology for the years 1996-2003 were also reviewed.

STUDY SELECTION AND DATA EXTRACTION: Identified articles, including animal studies, case reports, and case series, were evaluated for this review. No clinical trials were available.

DATA SYNTHESIS: Animal models of CCB overdose demonstrate that high-dose insulin with supplemental dextrose and potassium was a more effective therapy than calcium, glucagon, or catecholamines. High-dose insulin appears to enhance cardiac carbohydrate metabolism and has direct inotropic effects. Published clinical experience is limited to 13 case reports where insulin was used after other therapies were failing; 12 of these patients survived. High-dose insulin therapy was beneficial for CCB-induced hypotension, hyperglycemia, and metabolic acidosis. Bradycardia and heart block resolved in some patients, but persisted in others.

CONCLUSIONS: Based on animal data and limited human experience, as well as the inadequacies of available alternatives for patients with significant poisoning, high-dose insulin therapy warrants further study and judicious use in patients with life-threatening CCB poisoning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app