Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors.

Protein kinase B/Akt is a key signaling molecule that regulates cell survival, growth, and metabolism, and inhibits apoptosis. Traumatic brain injury (TBI) activates Akt, and Akt has been implicated in neuronal survival after TBI, but little is known about injury-induced Akt activation in astrocytes, cells that exhibit hypertrophic and hyperplastic responses to CNS injury. Here we have investigated the effect of mechanical strain on Akt activation in primary cultures of rat cortical astrocytes growing on deformable Silastic membranes. When astrocytes were subjected to mechanical strain (50 msec; 5-7.5 mm displacement), we observed an increase in phosphorylation of serine 473, a key indicator of Akt activation. Akt phosphorylation was increased at 3 min postinjury, was maximal from 5 to 10 min, and declined gradually thereafter. Akt activation was also dependent on the severity of the injury. Stretch-induced Akt phosphorylation was attenuated by blocking calcium influx and phosphoinositide 3-kinase (PI3K), an upstream activator of Akt. In addition, we found that ATP is rapidly released after mechanical strain and that the P2 purinergic receptor antagonist iso-pyridoxal-5'-phosphate-6-azophenyl-2',5'disulfonate (PPADS) attenuated trauma-induced Akt activation. We conclude that mechanical strain causes activation of Akt in astrocytes via stimulation of P2 receptors. This suggests that P2 receptor/Akt signaling promotes astrocyte survival and growth, and this process may play a role in the generation of reactive gliosis after TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app