Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies.

PURPOSE: Paraneoplastic and autoimmune retinopathies are immunologically mediated retinal degenerations that are associated with antibodies directed against any of several retinal proteins, including alpha-enolase. We report the clinical and electrophysiological features of antienolase retinopathy in contrast to the features of antirecoverin retinopathy.

DESIGN: Retrospective, observational case series.

METHODS: Patients were referred for evaluation of unexplained acquired visual symptoms, including photopsias, and loss of visual acuity or field considered of possible retinal origin. Full-field and multifocal electroretinograms (ERGs) were performed. Sera from patients were examined for antiretinal antibodies by Western blot analysis using proteins extracted from human retinas and by immunohistochemistry; antienolase was confirmed by incubating patient sera with purified alpha-enolase.

RESULTS: Of 87 patients with unexplained retinal visual symptoms associated with abnormal ERGs, 37 (43%) demonstrated autoantibodies to retinal antigens, including 12 against alpha-enolase, of whom 4 had cancer. Initial visual loss was typically central and often asymmetric. The ERGs demonstrated mostly normal rod responses but central cone abnormalities (evident on multifocal ERG) and, for many, global cone abnormalities. Seven patients developed optic disk pallor. Corticosteroid and immunosuppressive therapy, when attempted, was clinically ineffective.

CONCLUSIONS: Antienolase retinopathy is a protean autoimmune retinopathy that characteristically presents with cone dysfunction. The visual impairment and course vary from relative stability for years to slow progression with loss of central vision. With time, optic disk pallor can evolve, presumably from attrition of ganglion cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app