JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors.

Pain 2005 June
The alpha2A and alpha2C adrenergic receptor (AR) subtypes mediate antinociception when activated by the endogenous ligand norepinephrine. These receptors also produce antinociceptive synergy when activated concurrently with opioid receptor activation. The involvement of the opioid receptors in the mechanisms governing transcutaneous electrical nerve stimulation (TENS) has been well described. While spinal alpha-2 ARs do not appear to be involved in TENS antihyperalgesia in rats, the noradrenergic analgesic system also involves supraspinal and peripheral sites. Thus, a broader evaluation of the potential contribution of alpha-2 AR to TENS is warranted. The current study compared the antihyperalgesic efficacy of high (100 Hz) and low (4 Hz) frequency TENS in mutant mice lacking a functional alpha2A AR against their respective wildtype counterparts. The degree of secondary heat hyperalgesia induced by intra-articular injection of carrageenan/kaolin (3%) mixture did not differ among the experimental groups. However, the antihyperalgesia induced by both low and high frequency TENS was significantly diminished in alpha2A mutant mice compared to controls. The alpha2 adrenergic receptor selective antagonist, SK&F 86466, reversed TENS-mediated antihyperalgesia when delivered intra-articularly, but not when delivered intrathecally or intracerebroventricularly. These data suggest that peripheral alpha2 ARs contribute, in part, to TENS antihyperalgesia. This pharmacodynamic response is consistent with previous anatomical observations that alpha2A ARs are expressed on primary afferent neurons and macrophages near injured tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app