Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Overview of the molecular and biochemical basis of branched-chain amino acid catabolism.

The branched-chain amino acids (BCAAs) are required for protein synthesis and neurotransmitter synthesis. The branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is the most important regulatory enzyme in the catabolic pathways of the BCAAs. Activity of the complex is controlled by covalent modification with phosphorylation of its branched-chain alpha-ketoacid dehydrogenase subunits by a specific kinase [branched-chain kinase (BDK)] causing inactivation and dephosphorylation by a specific phosphatase [branched-chain phosphatase (BDP)] causing activation. Tight control of BCKDC activity is important for conserving as well as disposing of BCAAs. Phosphorylation of the complex occurs when there is a need to conserve BCAAs for protein synthesis; dephosphorylation occurs when BCAAs are present in excess. The relative activities of BDK and BDP set the activity state of BCKDC. BDK activity is regulated by alpha-ketoisocaproate inhibition and altered level of expression. Less is known about BDP but a novel mitochondrial phosphatase was identified recently that may contribute to the regulation of BCKDC. Reduced capacity to oxidize BCAAs, as in maple syrup urine disease, results in excess BCAAs in the blood and profound neurological dysfunction and brain damage. In contrast, loss of control of BCAA oxidation results in growth impairment and epileptic-like seizures. These findings emphasize the importance of control of BCAA catabolism for normal neurological function. It is proposed that the safe upper limit of dietary BCAA intake could be established with a BCAA tolerance test and clamp protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app