JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metalloproteinase-2 and -9 in giant cell arteritis: involvement in vascular remodeling.

Circulation 2005 July 13
BACKGROUND: Both matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) have been postulated to play roles in the pathophysiology of giant cell arteritis (GCA) because of their ability to degrade elastin. Understanding the specific mediators of arterial damage in GCA could lead to new therapeutic targets in this disease.

METHODS AND RESULTS: Temporal artery biopsy specimens were obtained from 147 consecutive patients suspected of GCA. Clinical and histopathological data were collected according to protocol. Using immunohistochemistry, we compared the expression of MMP-2 and MMP-9 in the temporal artery biopsies of both GCA cases (n=50) and controls (n=97). MMP-9 was found more frequently in positive than in negative temporal artery biopsies (adjusted odds ratio [OR], 3.20; P=0.01). In contrast, the frequency of MMP-2 was not significantly different between positive and negative biopsies (adjusted OR, 2.18; P=0.22). Both MMP-2 and MMP-9 were found in macrophages and giant cells near the internal elastic lamina and in smooth muscle cells and myofibroblasts of the media and intima. MMP-9 was also found in the vasa vasorum. MMP-9 but not MMP-2 was associated with internal elastic lamina degeneration, intimal hyperplasia, and luminal narrowing, even after adjustment for possible confounding variables.

CONCLUSIONS: MMP-9 appears more likely than MMP-2 to be involved in the pathophysiology of GCA. MMP-9 not only participates in the degradation of elastic tissue but also is associated with intimal hyperplasia, subsequent luminal narrowing, and neoangiogenesis. The expression of MMP by smooth muscle cells implicates these cells as potential secretory cells in GCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app