JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Drug-induced gingival overgrowth--a review.

Drug-induced gingival overgrowth is a side effect associated with 3 types of drugs: anticonvulsants (phenytoin), immunosuppressive agents (cyclosporine A), and various calcium channel blockers for cardiovascular diseases. Gingival overgrowth is characterized by the accumulation of extracellular matrix in gingival connective tissues, particularly collagenous components with various degrees of inflammation. Although the mechanisms of these disorders have not been elucidated, recent studies suggest that these disorders seem to be induced by the disruption of homeostasis of collagen synthesis and degradation in gingival connective tissue, predominantly through the inhibition of collagen phagocytosis of gingival fibroblasts. The integrins are a large family of heterodimeric transmembrane receptors for extracellular matrix molecules. alpha2beta1 integrin serves as a specific receptor for type I collagen on fibroblasts, and alpha2 integrin has been shown to play a crucial role in collagen phagocytosis. Actin filaments, which are assembled from monomers and oligomers, are involved in collagen internalization after binding to integrins. Furthermore, the implication of intracellular calcium in the regulation of integrin-mediated binding activity and gelsolin activity, known as a calcium-dependent actin-severing protein, is also described. In this review, we focus on collagen metabolism in drug-induced gingival overgrowth, focusing on the regulation of collagen phagocytosis in fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app