Journal Article
Review
Add like
Add dislike
Add to saved papers

Hamartin and tuberin: working together for tumour suppression.

TSC1 and TSC2 are two recently identified tumour suppressor genes encoding hamartin and tuberin, respectively, and involved in pathogenesis of tuberous sclerosis, neurological disorder connected with the development of hamartomas in numerous organ systems, including the brain, kidneys, heart and liver. Both protein products of TSC1 and TSC2 form an intracellular complex exerting GTPase-activating (GAP) activity towards a small G protein, Ras homologue enriched in brain (Rheb). Inhibition of Rheb is important for the regulation of mTOR pathway, while mutation of hamartin or tuberin results in uncontrolled cell cycle progression. Tuberin, possessing the Rheb-GAP domain, is phosphorylated by several kinases that confer the signals of growth factor stimulation or low cellular energy levels. Such a modification of tuberin influences its activity within the complex with hamartin and positively or negatively modulates mTOR-regulated protein translation and cellular proliferation. Current article describes biochemical properties of hamartin and tuberin, their known regulatory phosphorylation sites and binding partners.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app