JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase.

Human Molecular Genetics 2005 November 16
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. In recent studies of enzyme replacement therapy for animal models with lysosomal storage diseases, cellular and humoral immune responses to the injected enzymes have been recognized as major impediments to effective treatment. To study the long-term effectiveness and side effects of therapies in the absence of immune responses, we have developed an MPS IVA mouse model, which has many similarities to human MPS IVA and is tolerant to human GALNS protein. We used a construct containing both a transgene (cDNA) expressing inactive human GALNS in intron 1 and an active site mutation (C76S) in adjacent exon 2 and thereby introduced both the inactive cDNA and the C76S mutation into the murine Galns by targeted mutagenesis. Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow. At 3 months, lysosomal storage is marked within hepatocytes, reticuloendothelial Kupffer cells, and cells of the sinusoidal lining of the spleen, neurons and meningeal cells. The bone storage is also obvious, with lysosomal distention in osteoblasts and osteocytes lining the cortical bone, in chondrocytes and in the sinus lining cells in bone marrow. Ubiquitous expression of the inactive human GALNS was also confirmed by western blot using the anti-GALNS monoclonal antibodies newly produced, which resulted in tolerance to immune challenge with human enzyme. The newly generated MPS IVA mouse model should provide a good model to evaluate long-term administration of enzyme replacement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app