JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Magnetization transfer contrast in fat-suppressed steady-state three-dimensional MR images.

We demonstrate that magnetization transfer contrast can be used to improve the diagnostic utility of fat-suppressed steady-state three-dimensional gradient-recalled images. Fat suppression is achieved using a "jump-return" pair of contiguous shaped pulses. No time interval exists between the pulses, and no RF echo is generated. The sequence normally produces images with "density" weighting. Preparation of the spin magnetization with off-resonance frequency-selective excitation creates magnetization transfer contrast which attenuates signal intensity in proportion to the exchange rate of magnetization from free water with magnetization from water bound to macromolecules or protons that have restricted mobility. The resulting images have excellent fat suppression with low sensitivity to motion since no subtraction is used. In addition, the mechanism of signal attenuation is independent of paramagnetic effects, and addition of Gd-DTPA produces signal enhancement from vascularized regions of tissue. Examples are presented for the knee and breast, where the observation of pathology with signal enhancement from Gd-DTPA is improved over conventional 3D fat-suppressed images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app