JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Growth control under stress: mTOR regulation through the REDD1-TSC pathway.

Cell Cycle 2005 November
Dysregulated signaling by the checkpoint kinase TOR (target of rapamycin) has been linked to numerous human cancers. The tuberous sclerosis tumor suppressors TSC1 and TSC2 form a protein complex that integrates and transmits cellular growth factor and stress signals to negatively regulate TOR activity. Several recent reports have identified the stress response gene REDD1 as an essential regulator of TOR activity through the TSC1/2 complex in both Drosophila and mammalian cells. REDD1 is induced in response both to hypoxia and energy stress, and cells that lack REDD1 exhibit highly defective TOR regulation in response to either of these stress signals. While the precise mechanism of REDD1 function remains to be determined, the finding that REDD1-dependent TOR regulation contributes to cell growth/cell size control in flies and mammals suggests that abnormalities of REDD1-mediated signaling might disrupt energy homeostasis and/or promote tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app