Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.

BACKGROUND: The epidermal growth factor receptor (EGFR) is frequently amplified, overexpressed, or mutated in glioblastomas, but only 10 to 20 percent of patients have a response to EGFR kinase inhibitors. The mechanism of responsiveness of glioblastomas to these inhibitors is unknown.

METHODS: We sequenced kinase domains in the EGFR and human EGFR type 2 (Her2/neu) genes and analyzed the expression of EGFR, EGFR deletion mutant variant III (EGFRvIII), and the tumor-suppressor protein PTEN in recurrent malignant gliomas from patients who had received EGFR kinase inhibitors. We determined the molecular correlates of clinical response, validated them in an independent data set, and identified effects of the molecular abnormalities in vitro.

RESULTS: Of 49 patients with recurrent malignant glioma who were treated with EGFR kinase inhibitors, 9 had tumor shrinkage of at least 25 percent. Pretreatment tissue was available for molecular analysis from 26 patients, 7 of whom had had a response and 19 of whom had rapid progression during therapy. No mutations in EGFR or Her2/neu kinase domains were detected in the tumors. Coexpression of EGFRvIII and PTEN was significantly associated with a clinical response (P<0.001; odds ratio, 51; 95 percent confidence interval, 4 to 669). These findings were validated in 33 patients who received similar treatment for glioblastoma at a different institution (P=0.001; odds ratio, 40; 95 percent confidence interval, 3 to 468). In vitro, coexpression of EGFRvIII and PTEN sensitized glioblastoma cells to erlotinib.

CONCLUSIONS: Coexpression of EGFRvIII and PTEN by glioblastoma cells is associated with responsiveness to EGFR kinase inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app