Add like
Add dislike
Add to saved papers

Metabolic changes associated with hyperammonemia in patients with propionic acidemia.

Propionic acidemia is an autosomal recessive disorder caused by deficiency of propionyl CoA carboxylase. Affected patients can develop severe hyperammonemia, whose causative mechanism is unknown. In this study, we monitored changes in metabolic parameters associated with hyperammonemia in patients with propionic acidemia. Levels of ammonia were correlated with plasma levels of individual amino acids and carnitine and with urinary organic acids. Significance of correlations was determined with analysis of variance. Hyperammonemia positively correlated with an increase in branched-chain amino acids (leucine and isoleucine) and a decrease in glutamine/glutamate and esterified carnitine. The urinary excretion of methylcitric acid, formed by the combination of propionic acid with oxaloacetate from the Krebs cycle, increased while that of citric acid decreased with hyperammonemia. These results suggest that in propionic acidemia, hyperammonemia is triggered by catabolism with the accumulation of propionic acid derivatives. The decrease of the plasma levels of glutamine/glutamate with hyperammonemia in patients with propionic acidemia indicates that the mechanism producing hyperammonemia differs from that in urea cycle defects. The increase in methylcitric acid and decline in citric acid urinary excretion suggest that hyperammonemia in propionic acidemia might be related to inability to maintain adequate levels of glutamine precursors through a dysfunctional Krebs cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app