Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-recoverin antibodies induce an increase in intracellular calcium, leading to apoptosis in retinal cells.

Autoantibodies against recoverin, a Ca2+-binding protein found in patients with cancer-associated retinopathy (CAR syndrome), penetrate retinal cells and induce their apoptosis via a mitochondrial pathway. The goal of this study was to investigate whether the entry of anti-recoverin antibody into E1A.NR3 retinal cells causes a change in intracellular Ca2+. Intracellular Ca2+ was measured using the Ca2+-sensitive fluorescent dye Fura-2 AM in living E1A.NR3 retinal cells treated with anti-recoverin antibody Rec-1, patients' autoantibodies, and control rat and human IgG. The exposure of retinal cells to Rec-1 antibody and to the CAR patients' autoantibodies in vitro caused a significant increase in intracellular Ca2+, while non-specific antibodies did not induce such an effect. Co-treatment of the E1A.NR3 cells with Rec-1 in the presence of nifedipine, a L-type Ca2+ channel blocker, significantly suppressed the increase of Ca2+. Treatment with nifedipine also blocked changes in the anti-apoptotic protein bcl-xL and in expressions of the pro-apoptotic protein bax. Nifedipine-treated cells also showed a decrease in cytosolic cytochrome c release and a decrease in caspase 3 activation, compared to cells treated only with Rec-1 antibody. The increase in the antibody-induced Ca2+ is at least in part dependent on extracellular Ca2+. Nifedipine was found to inhibit the entry of Ca2+ into the cells and to protect them from Rec-1-induced apoptosis. Increased levels of intracellular Ca2+ may lead to retinal dysfunction and degeneration in the CAR syndrome. Our results provide a molecular basis for the use of Ca2+ blockers in the treatment of the CAR syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app