JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperacute rejection in ex vivo-perfused porcine lungs transgenic for human complement regulatory proteins.

Inhibition of complement activation via human membrane-associated complement regulators is known to prevent hyperacute rejection in heart and kidney pig-to-primate transplantation. The protective effect of such strategies in pulmonary xenografts, however, seems to be insufficient. In an ex vivo perfusion, model lungs from donor pigs transgenic for human CD55 (n = 6) or human CD59 (n = 5) were perfused with fresh human blood and compared with nontransgenic organs (n = 6). In addition, a soluble complement component 1 esterase inhibitor (C1-Inh) was applied in h-CD55 transgenic lungs (n = 3). In the h-CD55 transgenic group, survival was prolonged (P < 0.05), quality and maximal time of oxygenation significantly improved and pulmonary vascular resistance reduced compared with the control group. There was a decreased sequestration of platelets, less parenchymal injury and reduced deposition of C(5b-9) in the h-CD55 transgenic group. Additional soluble complement inhibition (C1-Inh) did not prolong survival of h-CD55 transgenic lungs. Survival and pulmonary function in lungs expressing h-CD59 was not significantly different from parameters observed in nontransgenic lungs. In this ex vivo model of pig-to-primate lung transplantation, membrane-based complement inhibition resulted in significantly improved pulmonary function. However, minor histopathological injuries observed in these transgenic xenografts suggested only partial protection from pulmonary dysfunction by complement inhibition alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app