JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mice transgenic for Kit(V620A): recapitulation of piebaldism but not progressive depigmentation seen in humans with this mutation.

Piebaldism is an autosomal dominant genetic pigmentary disorder, characterized by congenital white hair and patches located on the forehead, anterior trunk, and extremities. Most piebald patients have a mutation of the KIT gene, which encodes a tyrosine kinase receptor involved in pigment cell development. The white hair and patches of such patients are already completely formed at birth and do not usually expand thereafter. This stability of pigmented spots also applies to Kit(W) and Kitl(Sl) mutant mice. However, two novel cases of piebaldism were reported in 2001, in which both mother and daughter having a novel Val620Ala mutation in their KIT gene showed progressive depigmentation. To prepare an animal model of this mutation, to explore undefined functions of KIT signaling for maintaining pigmented melanocytes in the skin or more specifically the integrity of the melanocyte stem cell system in the postnatal skin, we produced transgenic mice expressing Val620Ala Kit. These mice well mimicked the white spotting pattern of patients; however, no change in this pattern was observed after birth, even after increasing the transgene expression by various means. Here, we report the unexpectedly extremely stable maintenance of the melanocyte stem cell system under stringent conditions for KIT signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app