Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting.

Familial renal glucosuria (FRG) is an inherited renal tubular disorder characterized by persistent isolated glucosuria in the absence of hyperglycemia. Mutations in the sodium/glucose co-transporter SGLT2 coding gene, SLC5A2, were recently found to be responsible for the disorder. Here, we report the molecular and phenotype study of five unrelated FRG families. Five patients were identified and their family members screened for glucosuria. SLC5A2 coding region of index cases was polymerase chain reaction amplified and sequenced. Five different mutations are reported, including four novel alleles. The IVS12+1G>A and p.A102V alleles were identified in homozygosity in index patients of two unrelated families. A proband from another family was compound heterozygous for the p.R132H and p.A219T mutations, and the heterozygous p.Q167fsX186 frameshift allele was the only mutation detected in the affected individual from an additional pedigree. For the remaining family no mutations were detected. The patient homozygous for the p.A102V mutation had glucosuria of 65.6 g/1.73 m(2)/24 h, evidence of renal sodium wasting, mild volume depletion, and raised basal plasma renin and serum aldosterone levels. Our findings confirm previous observations that in FRG, transmitted as a codominant trait with incomplete penetrance, most mutations are private. In the only patient with massive glucosuria in our cohort there was evidence evocative of renin-angiotensin aldosterone system activation by extracellular volume depletion induced by natriuresis. Definite proof of renin-angiotensin aldosterone system activation in FGR should rely on evaluation of additional patients with massive glucosuria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app