JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients.

Epidermolysis bullosa acquisita (EBA) is an autoimmune sub-epidermal blistering disease characterized by autoantibodies to type VII (anchoring fibril) collagen. To date, however, direct evidence for a pathogenic role of human EBA autoantibodies has not been demonstrated. In this study, we affinity-purified anti-type VII collagen antibodies from EBA patients' sera and then injected them into adult hairless immunocompetent mice. Mice injected with EBA autoantibodies developed skin fragility, blisters, erosions, and nail loss on their paws - all features of EBA patients. By clinical, histological, immunological, and ultrastructural parameters, the induced lesions were reminiscent of human EBA. Histology showed bullous lesions with an epidermal-dermal separation. IgG and C3 deposits were observed at the epidermal-dermal junction. All mice had serum antibodies that labeled the dermal side of salt-split human skin like EBA sera. Direct immunogold electron microscopy specifically localized deposits of human IgG to anchoring fibrils. (Fab')(2) fragments generated from EBA autoantibodies did not induce disease. We conclude that EBA human patient autoantibodies cause sub-epidermal blisters and induce EBA skin lesions in mice. These passive transfer studies demonstrate that human EBA autoantibodies are pathogenic. This novel EBA mouse model can be used to further investigate EBA autoimmunity and to develop possible therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app