Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of HOXA7 to HOXA13 and PBX1 genes in various forms of MRKH syndrome (congenital absence of uterus and vagina).

The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome refers to the congenital absence or severe hypoplasia of the female genital tract, often described as uterovaginal aplasia which is the prime feature of the syndrome. It is the second cause of primary amenorrhea after gonadal dysgenesis and occurs in approximately 1 in 4500 women. Aetiology of this syndrome remains poorly understood. Frequent association of other malformations with the MRKH syndrome, involving kidneys, skeleton and ears, suggests the involvement of major developmental genes such as those of the HOX family. Indeed mammalian HOX genes are well known for their crucial role during embryogenesis, particularly in axial skeleton, hindbrain and limb development. More recently, their involvement in organogenesis has been demonstrated notably during urogenital differentiation. Although null mutations of HOX genes in animal models do not lead to MRKH-like phenotypes, dominant mutations in their coding sequences or aberrant expression due to mutated regulatory regions could well account for it. Sequence analysis of coding regions of HOX candidate genes and of PBX1, a likely HOX cofactor during Müllerian duct differentiation and kidney morphogenesis, did not reveal any mutation in patients showing various forms of MRKH syndrome. This tends to show that HOX genes are not involved in MRKH syndrome. However it does not exclude that other mechanisms leading to HOX dysfunction may account for the syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app