EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

N-acetyl-L-cysteine abrogates fibrogenic properties of fibroblasts isolated from Dupuytren's disease by blunting TGF-beta signalling.

Dupuytren's disease, a benign fibroproliferative disorder of the palmar fascia, represents an ideal model to study tissue fibrosis. Transforming growth factor-beta1 (TGF-beta1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. Thus, targeting this basic pathomechanism seems suitable to establish new treatment strategies. One such promising treatment involves the substance N-acetyl-L-cysteine (NAC), shown to have antifibrotic properties in hepatic stellate cells and rat fibroblasts. In order to investigate antifibrotic effects of N-acetyl-L-cysteine (NAC), fibroblasts were isolated from surgically resected fibrotic palmar tissues (Dupuytren fibroblasts, DF) and exposed to different concentrations of NAC and recombinant TGF-beta1. Fibroblasts isolated from tendon pulleys served as controls (control fibroblasts, CF). Smad signalling was investigated by a Smad binding element driven reporter gene analysis. Both cell types express TGF-beta1, indicating autocrine signalling in DF and CF. This was confirmed by comparing reporter gene activity from LacZ and Smad7 adenovirus infected cells. NAC treatment resulted in abrogation of Smad mediated signalling comparable to ectopically overexpressed Smad7, even when the cells were stimulated with recombinant TGF-beta1 or ectopically expressed a constitutively active TGF-beta receptor type I. Additionally, NAC dose-dependently decreased expression of three major indicators of impaired fibrotic matrix turnover, namely alpha-smooth muscle actin (alpha-SMA), alpha 1 type I procollagen (Col1A1), and plasminogen activator inhibitor-type I (PAI-1). Our results suggest that TGF-beta signalling and subsequent expression of fibrogenesis related proteins in Dupuytren's disease is abrogated by NAC thus providing a basis for a therapeutic strategy in Dupuytren's disease and other fibroproliferative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app