JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Levels of serum chemokines discriminate clinical myelopathy associated with human T lymphotropic virus type 1 (HTLV-1)/tropical spastic paraparesis (HAM/TSP) disease from HTLV-1 carrier state.

Approximately 5% of people infected with human T lymphotropic virus type 1 (HTLV-1) develop clinical myelopathy or tropical spastic paraparesis (HAM/TSP) that is associated with high-levels of Th1 cytokines, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha. Chemokines are known to induce cytokine secretion and direct the trafficking of immune cells to sites of disease. The present study measured serum chemokines correlated with autonomously released IFN-gamma in cell cultures. HTLV-1 infection was defined by enzyme-linked immunosorbent assay (ELISA) and confirmed by Western blot. Subjects included HTLV-1 carriers (n = 56), patients with HAM/TSP (n = 31) and healthy HTLV-1 seronegative volunteer controls (n = 20). Serum chemokines and IFN-gamma autonomously released by mononuclear cells in culture were quantified by ELISA. Compared to HTLV-1 carriers, serum chemokines in HAM/TSP patients showed significantly increased levels of CXCL9 and CXCL10, significantly diminished levels of CCL2 and similar amounts of CCL11 and CCL24. In contrast, CCL11 and CCL24 were significantly lower in serum of HAM/TSP patients than either control. IFN-gamma was positively correlated with CXCL9 and CXCL10 when HAM/TSP and HTLV-1 carriers were used as a combined group. However, despite a large proportion of HTLV-1 carriers having high IFN-gamma levels, these chemokines were not increased in carriers. This study showed that high levels of CXCL9 and CXCL10 in the systemic circulation and low serum CCL2 levels are features of HAM/TSP. HTLV-1 infection and Tax and/or additional viral encoded factor-mediated pathological processes triggering T cell activation with autogenous IFN-gamma release are probably involved in regulating chemokine release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app