JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Effects of higher dietary protein intake on energy balance and metabolic control in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency.

The incidence of overweight and obesity is increasing among children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or mitochondrial trifunctional (TFP) deficiency. Traditional treatment includes fasting avoidance and consumption of a low-fat, high-carbohydrate diet. A diet higher in protein and lower in carbohydrate may help to lower total energy intake while maintaining good metabolic control. To determine the short-term safety and efficacy of a high protein diet, subjects were admitted to the General Clinical Research Center and fed an ad-libitum high-protein diet and a high-carbohydrate diet for 6 days each using a randomized, crossover design. Nine subjects with LCHAD or TFP deficiency, age 7-14 were enrolled. Body composition was determined by DEXA. Total energy intake was evaluated daily. Resting energy expenditure and substrate utilization were determined by indirect calorimetry. Post-prandial metabolic responses of plasma glucose, insulin, leptin, ghrelin, acylcarnitines, and triglyceride were determined in response to a liquid meal. Subjects had a higher fat mass, lower lean mass and higher plasma leptin levels compared to reference values. While on the high protein diet energy consumption was an average of 50 kcals/day lower (p = 0.02) and resting energy expenditure was an average of 170 kcals/day higher (p = 0.05) compared to the high carbohydrate diet. Short-term higher protein diets were safe, well tolerated, and resulted in lowered energy intake and increased energy expenditure than the standard high-carbohydrate diet. Long-term studies are needed to determine whether higher protein diets will reduce the risk of overweight and obesity in children with LCHAD or TFP deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app