JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Bedside monitoring of blood beta-hydroxybutyrate levels in the management of diabetic ketoacidosis in children.

INTRODUCTION: Diabetic ketoacidosis (DKA) affects many children with type 1 diabetes. Insulin treatment of DKA is traditionally guided by changes in the blood glucose levels and blood gases, whereas beta-hydroxybutyrate (beta-OHB)--the main ketoacid causing acidosis--is rarely measured. The purpose of this study was to evaluate if bedside monitoring of blood beta-OHB levels can simplify management of DKA through elimination of superfluous laboratory monitoring.

METHODS: Our emergency department treated 68 children with DKA using a standard protocol with monitoring of venous pH, partial pressure of CO(2) (pCO(2)), bicarbonate, glucose, blood urea nitrogen, and electrolytes (two to 10 time points per patient). Venous beta-OHB levels were measured using the Precision Xtra meter (MediSense/Abbott Diabetes Care, Abbott Park, IL) and, on duplicate batched serum samples, using a reference laboratory method (Cobas Mira Plus; Roche Diagnostics, Indianapolis, IN). Correlations between bedside meter beta-OHB and other parameters were evaluated in a series of general linear models with a time series covariance structure fit using spatial power law.

RESULTS: The bedside meter beta-OHB levels were significantly correlated with pH (r = -0.63; P <0.0001), bicarbonate (r = -0.74; P <0.0001), and pCO(2) (r = -0.55; P <0.0001) at all points of measurement during the treatment (unadjusted Pearson correlations). The pH, bicarbonate, and pCO(2) were entered into separate time series analysis models with treatment duration as a measure of time. The results confirmed that bedside levels of beta-OHB correlated very closely with time-dependent levels of venous pH, bicarbonate, and pCO(2). Good agreement between the two methods of beta-OHB measurement (r = 0.92; P <0.0001) was confirmed using the Bland-Altman plot analysis.

CONCLUSIONS: The Precision Xtra accurately measures blood beta-OHB levels, particularly at lower levels. While the initial measurement of pH and/or bicarbonates is warranted, real-time beta-OHB levels may replace repeat laboratory measurement of these parameters in the management of DKA. Future studies should evaluate safety and cost-effectiveness of such simplified DKA treatment protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app