Evaluation Study
Journal Article
Add like
Add dislike
Add to saved papers

Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy.

OBJECTIVES: Replacement of the water bath by a water cushion in newer lithotriptors introduces an acoustic interface and an ideal coupling agent is required to prevent energy loss at this interface. We aim to study the effect of bubbles in the coupling media on efficacy of extracorporeal shock wave lithotripsy (ESWL) by an in vitro experiment.

METHODS: Using a standardised in vitro model 40 artificial stones were randomly treated on Modulith SLK lithotriptor using either conventional ultrasound gel (high bubble content) before and after displacing visible bubbles, a thin ultrasound gel (Therasonic) or silicon oil (both with negligible bubbles). Percentage area covered by bubbles in each case and the diameters and depth of crater created in each stone were measured by two blinded observers to determine the correlation between the bubble contents and disintegration efficacy. In vivo effect of two ultrasound gels was compared in terms of pain scores and stone fragmentation rates in ten patients treated with both gels.

RESULTS: Volume of the craters was significantly greater with the Therasonic gel (102.4+/-33.4 mm3) or silicon oil (98.8+/-9.8 mm3) than the conventional ultrasound gel (49.2+/-32.6 mm3). But it was greatest (p<0.001) with ultrasound gel without bubbles (163.5+/-22.6 mm3). Depth and volume of the stone crater increased significantly with decreasing bubble contents of gel (p<0.001). Compared to standard ultrasound gel, patients treated with Therasonic gel reported significantly higher pain scores (median 3.5 vs. 8.0; p<0.001).

CONCLUSIONS: Efficacy of ESWL is significantly correlated to air bubbles within the coupling gel and can be improved significantly by eliminating the bubbles from the coupling medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app