Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration.

OBJECTIVE: The present study was designed to clarify the morphological features of early human atherosclerosis and to determine whether specific extracellular matrix proteoglycans play a role in early atherogenesis.

METHODS AND RESULTS: Step and serial sections were obtained from right coronary arteries with no or early atherosclerosis. Atherosclerosis was classified into 4 grades according to the amount of lipid deposition. Coronary arteries with Grade 0 showed diffuse intimal thickening (DIT) with no lipid deposits. The extracellular matrix proteoglycans, biglycan and decorin, were localized in the outer layer of DIT. Most cases of Grade 1 and Grade 2 exhibited fatty streaks with extracellular lipids colocalizing with biglycan and decorin in the outer layer of the intima. As lipid grades increased, macrophages increased in number and were present in the deeper layers. Most cases of Grade 3 exhibited pathologic intimal thickening (PIT) with extracellular lipids underneath a layer of foam cell macrophages.

CONCLUSIONS: In early human coronary atherosclerosis, fatty streaks develop via extracellular deposition of lipids associated with specific types of proteoglycans in the outer layer of preexisting DIT. As the amount of the lipid increases in fatty streaks, macrophages infiltrate toward the deposited lipid to form PIT with foam cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app