JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy.

Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)-encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease-modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app