Journal Article
Review
Add like
Add dislike
Add to saved papers

Requirements for bioanalytical procedures in postmortem toxicology.

The application of analytical techniques in postmortem toxicology is often more difficult than in other forms of forensic toxicology owing to the variable and often degraded nature of the specimens and the diverse range of specimens available for analysis. Consequently, analysts must ensure that all methods are fully validated for the particular postmortem specimen(s) used. Collection of specimens must be standardized to minimize site-to-site variability and should if available include a peripheral blood sample and at least one other specimen. Urine and vitreous humor are good specimens to complement blood. In some circumstances solid tissues such as liver are recommended as well as gastric contents. Substance-screening techniques are the most important element since they will determine the range of substances that were targeted in the investigation and provide initial indication of the possible role of substances in the death. While immunoassay techniques are still commonly used for the most common drugs-of-abuse, chromatographic screening methods are required for general unknown testing. These are still predominately gas chromatography (GC) based using nitrogen/phosphorous detection and/or mass spectrometry (MS) detection, although some laboratories are now using time-of-flight MS or liquid chromatography (LC)-MS(MS) to cover a sometimes more limited range of substances. It is recommended that laboratories include a second chromatographic method to provide coverage of acidic and other substances not readily covered by a GC-based screen when extracts do not include all physiochemical types. This may include a gradient high-performance liquid chromatography (HPLC) photodiode array method, or better LC-MS(MS). Substance-specific techniques (e.g., benzodiazepines, opiates) providing a second form of identification (confirmation) are now divided between GC-MS(MS) and LC-MS(MS) procedures. LC-MS(MS) has taken over from many methods for the more polar compounds previously used in HPLC or in GC methods requiring derivatization. Analysts using LC-MS will need to obtain clean extracts to avoid poor and variable sensitivity caused by background suppression of the signal. Isolation techniques in postmortem toxicology tend to favor liquid extraction; however solid-phase extraction and solid-phase microextraction methods are available for many analytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app