Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The pathogenesis of ACTA1-related congenital fiber type disproportion.

OBJECTIVE: Mutations in ACTA1 have been associated with a variety of changes in muscle histology that likely result from fundamental differences in the way that ACTA1 mutations disrupt muscle function. Recently, we reported three patients with congenital fiber type disproportion (CFTD) caused by novel heterozygous missense mutations in ACTA1 (D292V, L221P, P332S) with marked type 1 fiber hypotrophy as the only pathological finding on muscle biopsy. We have investigated the basis for the histological differences between these CFTD patients and patients with ACTA1 nemaline myopathy (NM).

METHODS AND RESULTS: Mass spectrometry and two-dimensional gel electrophoresis demonstrate that mutant actin accounts for 25 and 50% of alpha-skeletal actin in the skeletal muscle of patients with the P332S and D292V mutations, respectively, consistent with a dominant-negative disease mechanism. In vitro motility studies indicate that abnormal interactions between actin and tropomyosin are the likely principal cause of muscle weakness for D292V, with tropomyosin stabilized in the "switched off" position. Both the D292V and P322S CFTD mutations are associated with normal sarcomeric structure on electron microscopy, which is atypical for severe NM. In contrast, we found no clear difference between ACTA1 mutations associated with NM and CFTD in tendency to polymerize or aggregate in C2C12 expression models.

INTERPRETATION: These data suggest that ACTA1 CFTD mutations cause weakness by disrupting sarcomere function rather than structure. We raise the possibility that the presence or absence of structural disorganization when mutant actin incorporates into sarcomeres may be an important determinant of whether the histological patterns of CFTD or NM develop in ACTA1 myopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app