Add like
Add dislike
Add to saved papers

Analysis of the novel factor X gene mutation Glu51Lys in two families with factor X-Riyadh anomaly.

Two families with 'factor X(FX)-Riyadh' have been identified (one of them related to the originally reported family). Affected members of both families exhibit prolongation in prothrombin time (PT) with normal partial thromboplastin time (PTT) and low assay levels of FX, when measured by PT-based assay. They do not have clinical bleeding diathesis, regardless of the PT prolongation. FX genes of the affected family members were analyzed by sequence analysis. A novel missense mutation in exon 4 of the FX gene, which causes the Glu51Lys substitution in the first epidermal growth factor-like domain of FX was found. The Glu51Lys mutation represents a type II mutation with low FX coagulant activity in the extrinsic pathway and normal FX antigen levels. This mutation may result in disruption of the predicted H-bonding between residue Glu51 of FX and the Asn199 residue of the tissue factor (TF) in the FX/TF/factor VIIa ternary complex, producing the phenotype 'FX deficiency Riyadh', with prolonged PT and normal PTT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app