JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

(TA)n UGT 1A1 promoter polymorphism: a crucial factor in the pathophysiology of jaundice in G-6-PD deficient neonates.

Increased heme catabolism has been reported in glucose-6-phosphate dehydrogenase (G-6-PD)-normal neonates who were also homozygous for (TA)7/(TA)7 (UGT1A1*28) uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT) promoter polymorphism (Gilbert syndrome). As G-6-PD deficiency is associated with increased hemolysis, we hypothesized that in G-6-PD-deficient neonates who also have the (TA)7/(TA)7 UGT promoter genotype, steady-state hemolysis would be even further increased. Male G-6-PD-deficient neonates were sampled for plasma total bilirubin (PTB), blood carboxyhemoglobin corrected for inhaled carbon monoxide in ambient air (COHbc) (an index of heme catabolism), and UGT (TA)n promoter genotype determination and compared with previously published G-6-PD-normal neonates. Although COHbc values were higher in the G-6-PD-deficient than in the G-6-PD-normal cohorts (0.97 +/- 0.32% of total Hb (tHb) versus 0.76 +/- 0.19% of tHb, p < 0.001), PTB values were similar (9.2 +/- 3.4 mg/dL versus 8.9 +/- 3.0 mg/dL, respectively, p = 0.3). Within the G-6-PD-deficient group, although COHbc values were alike between the three UGT promoter genotypes, PTB was higher in the (TA)7/(TA)7 homozygotes (11.1 +/- 4.0 mg/dL) compared with (TA)6/(TA)7 heterozygotes (9.1 +/- 3.2 mg/dL, p = 0.03) and wild-type (TA)6/(TA)6 homozygotes (8.8 +/- 3.4 mg/dL, p = 0.02). In the steady state, similar rates of hemolysis, but increased PTB in the G-6-PD- deficient, (TA)7/(TA)7 homozygotes, imply that (TA)7/(TA)7, homozygosity is central to increased PTB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app