COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Atlantoaxial fusion: a biomechanical analysis of two C1-C2 fusion techniques.

BACKGROUND CONTEXT: Different atlantoaxial fusion techniques are used for instability. Transarticular screws are biomechanically superior to wiring techniques and equivalent to C1 lateral mass to C2 pedicle (C1LM-C2P) fixation. Recently, C1 lateral mass to C2 laminar (C1LM-C2L) fixation has been shown to have flexibility similar to C1LM-C2P fixation in flexion, extension, lateral bending, and axial rotation.

PURPOSE: Compare the stiffness of C1LM-C2P with C1LM-C2L screw rod fixation.

STUDY DESIGN: In vitro biomechanical study.

OUTCOME MEASURES: Stiffness in flexion/extension, lateral bending, axial rotation, and anterior-posterior (AP) translation.

METHODS: Eight fresh-frozen human cadaveric cervical spines (C1-C3) were tested intact and, after a type II odontoid fracture, were instrumented and tested with two fixation constructs: C1LM-C2P screws and C1LM-C2L screws. The testing involved flexion, extension, lateral bending, AP translation, and axial rotation. Stiffness was measured and compared with a repeated-measures analysis.

RESULTS: C1LM-C2P was significantly stiffer than the intact in AP translation (p<.001), lateral bending (p=.001), and axial rotation (p=.002) and equivalent in flexion/extension (p=.09). C1LM-C2L was significantly stiffer than the intact in AP translation (p<.01) and axial rotation (p<.004) and equivalent in lateral bending (p<.71) and flexion/extension (p=.22). C1LM-C2P was stiffer than C1LM-C2L in right/left lateral bending (p<.001) and axial rotation (p=.009) and equivalent in AP translation (p=.06) and flexion/extension (p=.74).

CONCLUSION: C1LM-C2P fixation is equivalent to C1LM-C2L fixation in flexion/extension and AP translation and superior in lateral bending and axial rotation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app