JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Radiation sources providing increased UVA/UVB ratios attenuate the apoptotic effects of the UVB waveband UVA-dose-dependently in hairless mouse skin.

UV radiation-induced epidermal apoptotic sunburn cells provide a mechanism for eliminating cells with irreparable DNA damage. The UVB (290-320 nm) waveband is mainly responsible, but the role of UVA (320-400 nm) is less clear, and possible waveband interactions have not been examined. Recent studies in mice reveal a protective role for UVA against UVB-induced inflammation and immunosuppression, mediated via cutaneous heme oxygenase (HO). As HO has antiapoptotic properties in other tissues, this study examines the effect of UVA/UVB waveband interaction on apoptosis in the Skh:hr-1 hairless mouse epidermis. Apoptosis was assessed by sunburn cell number, caspase-3-positive cell number, and degree of DNA fragmentation, in mice exposed to radiation sources providing a constant UVB dose with increasing proportions of UVA. The results indicated that as the UVA/UVB ratio was increased, both the sunburn cell and caspase-3-positive cell number decreased, and the degree of DNA fragmentation was reduced. Treatment of mice with the HO inhibitor, tin protoporphyrin-IX, markedly reduced the UVA antiapoptotic effect, confirming a major role for HO. The observations suggest that UVA reduces UVB-induced DNA damage, and may therefore have anti-photocarcinogenic properties that could be harnessed for better photoprotection in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app