Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

A novel role of the Batten disease gene CLN3: association with BMP synthesis.

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) results from a deficiency of CLN3, a protein recently identified within detergent-resistant membranes (DRMs). To study the function of CLN3 within these domains we isolated DRMs from control and JNCL-brain and noted that JNCL-derived DRMs are less buoyant than control. Analysis of DRM phospholipids derived from JNCL-brain revealed a reduction of bis(monoacylglycerol)phosphate. Metabolic labeling of JNCL-fibroblasts demonstrated a reduction in the synthesis of bis(monoacylglycerol)phosphate which was restored following complementation with wild-type-CLN3, substantiating our initial observation in brain. Metabolic labeling of cell lines overexpressing wild-type-CLN3 resulted in increased bis(monoacylglycerol)phosphate synthesis, while overexpression of mutant CLN3-L170P decreased bis(monoacylglycerol)phosphate synthesis. These data illustrate a new finding, a strong correlation between CLN3 protein expression and synthesis of bis(monoacylglycerol)phosphate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app