Journal Article
Review
Add like
Add dislike
Add to saved papers

Does a melatonin-dependent circadian oscillator in the pars tuberalis drive prolactin seasonal rhythmicity?

The pars tuberalis (PT) of the adenohypophysis expresses a high density of melatonin receptors and is thought to be a crucial relay for the actions of melatonin on seasonal rhythmicity of prolactin secretion by the pars distalis (PD). In common with the suprachiasmatic nucleus of the hypothalamus and most other peripheral tissues, the PT rhythmically expresses a range of 'clock genes'. Interestingly, this expression is highly dependent upon melatonin/photoperiod, with several aspects unique to the PT. These observations led to the establishment of a conceptual framework for the encoding of seasonal timing in this tissue. This review summarises current knowledge of the morphological, functional and molecular aspects of the PT and considers its role in seasonal timing. The strengths and weaknesses of current hypotheses that link melatonin action in the PT to its seasonal effect on lactotrophs of the PD are discussed and alternative working hypotheses are suggested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app