Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Positron emission tomography metabolic correlates of apathy in Alzheimer disease.

BACKGROUND: Apathy is the most common neuropsychiatric manifestation in Alzheimer disease (AD). Clinical, single-photon emission computed tomography, magnetic resonance imaging, and pathologic studies of apathy in AD have suggested an association with frontal dysfunction, most supportive of anterior cingulate abnormalities, but without a definitive localization.

OBJECTIVE: To examine the association between apathy and cortical metabolic rate on positron emission tomography in AD.

DESIGN: Forty-one subjects with probable AD underwent [(18)F] fluorodeoxyglucose positron emission tomography imaging and neuropsychiatric and cognitive assessments. Global subscale scores from the Scale for the Assessment of Negative Symptoms in Alzheimer Disease were used to designate the absence or presence of clinically meaningful apathy. Whole-brain voxel-based analyses were performed using statistical parametric mapping (SPM2; Wellcome Department of Imaging Neuroscience, London, England), which yielded significance maps comparing the 2 groups.

RESULTS: Twenty-seven (66%) subjects did not have apathy, whereas 14 (34%) had apathy. Statistical parametric mapping analysis revealed significant reduced activity in the bilateral anterior cingulate region extending inferiorly to the medial orbitofrontal region (P < .001) and the bilateral medial thalamus (P = .04) in subjects with apathy. The results of the statistical parametric mapping analysis remained the same after individually covarying for the effects of global cognitive impairment, depressed mood, and education.

CONCLUSIONS: Apathy in AD is associated with reduced metabolic activity in the bilateral anterior cingulate gyrus and medial orbitofrontal cortex and may be associated with reduced activity in the medial thalamus. These results reinforce the confluence of evidence from other investigational modalities in implicating medial frontal dysfunction and related neuronal circuits in the neurobiology of apathy in AD and other neuropsychiatric diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app