Add like
Add dislike
Add to saved papers

Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts.

The p63 gene belongs to the p53 gene family and encodes for sequence-specific transcription factors. p63 has been characterized primarily in the context of epidermis where is implicated in the establishment of keratinocyte cell fate and in maintenance of epithelial self-renewal. DeltaNp63 isoform has been showed to be involved in several kinds of human tumors of epidermal origin, even nonmalignant, for the neoplastic and proliferative potential. Here, we report the differential expression and the cellular localization of the DeltaNp63 isoform in fibroblasts isolated from human keloids and hypertrophic scars compared to normal skin. Differently from hypertrophic scar, our results show that DeltaNp63 has a nuclear localization and is overexpressed only in keloid fibroblasts, suggesting an essential role of DeltaNp63 in vivo in human keloids. Consistent with our results, we hypothesize that DeltaNp63 overexpression may be oncogenic because of its ability to block the activity of p53 since p53 is underexpressed in fibroblasts from keloids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app