JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment.

The accurate segregation of chromosomes in mitosis requires the stable attachment of microtubules to kinetochores. The details of this complex and dynamic process are poorly understood. In this study, we report the interaction of a kinetochore-associated mitotic checkpoint kinase, BubR1, with two microtubule plus end-associated proteins, adenomatous polyposis coli (APC) and EB1, providing a potential link in stable kinetochore microtubule attachment. Using immunodepletion from and antibody addition to Xenopus laevis egg extracts, we show that BubR1 and its kinase activity are essential for positioning chromosomes at the metaphase plate. BubR1 associates with APC and EB1 in egg extracts, and the complex formation is necessary for metaphase chromosome alignment. Using purified components, BubR1 directly phosphorylates APC and forms a ternary complex with APC and microtubules. These findings support a model in which BubR1 kinase may directly regulate APC function involved in stable kinetochore microtubule attachment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app