Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Computer-assisted navigation applied to fetal cardiac intervention.

BACKGROUND: Prenatal cardiac interventions (PCI) for human fetal aortic valve (AoV) stenosis can reduce left ventricular hypoplasia and restore ventricular growth and function. However, 'freehand' needle delivery from the maternal skin through the uterine wall, fetal chest and ventricular apex to cross the fetal AoV remains technically challenging and time intensive, and is the rate-limiting step in the procedure.

METHODS: We developed a computer-assisted navigation (CANav) system that tracks the position and orientation of a two-dimensional (2D) ultrasound image relative to the trajectory of an electromagnetic (EM) embedded needle and stylet. We tested the CANav system in vitro using a water bath phantom, then in vivo using adult rats and pregnant (fetal) sheep.

RESULTS: The CANav system accurately tracked the delivered needle position in both in vitro phantom and adult rat model experiments. We performed 22 PCI attempts with or without CANav in a fetal sheep model. Maternal laparotomy was required to adjust the fetal position in 50% of the procedures. The time required to deliver the needle from the skin into the left ventricle (LV) using CANav was 2.9 +/- 1.7 (range 2-7) min (n = 14) vs. 5.5 +/- 4.3 (range 1-12) min (n = 8) without CANav (p < 0.05). The time needed to cross the aortic valve once the needle was within the LV was similar with and without CANav (p = 0.19).

CONCLUSIONS: CANav reduces the PCI time required to accurately deliver a needle to the fetal heart. Adaptations of this technical approach may be relevant to other congenital cardiac conditions and ultrasound-guided medical procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app